

High rate machine navigation and control using low-cost MEMS and GPS

and a lot of other information about technology and commercialization

Agenda

Non-technical (business/commercial)
 Starting a Geomatics company in Alberta
 In particular, spinning off from the UofC
 How to get through the first 2-3 years

Technical

□ Low-cost MEMS/GPS for machine control

 A real-world example of building an entire multi-sensor navigation system

□ Future work

Non-Technical

Company creation and business advice

- A spin-off company from the University of Calgary
 - Geomatics Engineering Department
 - □ Mobile Multi-Sensor Systems Research Group (Dr. El-Sheimy)
- Incorporated in 2009
 - □ 3 co-founders (Dr. El-Sheimy, Dr. Syed and myself)
 - □ Operational in 2010 (first hire)
- Trusted Positioning accomplishments to date
 - 19 employees
 - Several paying customers
 - Patents
- The first 2-3 years of a new company are really difficult and risky.
 - How did Trusted Positioning get through the first 2-3 years?

www.trustedpositioning.com

Areas of Advice

- 1. Building a team
- 2. Meaning
- 3. Company structure
- 4. Company uniqueness and niche
- 5. Business model (getting \$ from customers)
- 6. Financing the meaning (getting money any way you can to start)
- 7. Getting technology out of the University
- 8. Three P words

1. Building a team

□ 3 co-founders: Naser El-Sheimy (professor)

- Zainab Syed (Ph.D.)
- Myself
- □ Our values aligned
- □Our timing aligned
- □We trust one another

□ A common meaning united us: the desire to create positioning systems that work everywhere

Foundations of a Good Team

A team is built from Trust

Attention to Results	Accountability
Constructive Conflict	Commitment
TRUST	

Forgotten leaders

Who was Darwin Smith?
 CEO of the leading paper-based consumer products company in the world!
 Kimberley Clark, i.e. Kleenex

Who was Colman Mockler?
 CEO of the company that created the most coveted business model – the razor blade model.
 Gillette

Who was the CEO of the leading paper-based consumer products company in the world?

Who was the CEO of the company that created the razor blade business model?

- 2. Meaning is most important in the long run. Teams are built around meaning. A 'great idea' comes and goes. □ HP: purpose beyond profit □ Marriott: excellent service (even hot dogs!) □ Motorola: superior products at a fair price □ Sony: to elevate the Japanese culture and national status
- Been to a Marriott hot dog stand lately?

Beyond Licensing: Structure

3. Company Structure

4. Company Uniqueness and Niche \Box What are you the best at in the world? Some interesting niches were: □ Microsoft: BASIC for OS called CPM □ Hewlett-Packard: welding equipment for WWII □ Marriott: great service food vendor □ Motorola: battery eliminators for radios □ Sony: heating pads

These niches allowed the companies to survive the first few years

- 5. Business model. Niche your model too.
- Simplify it as much as possible
 - Define an economic scale that you pursue (e.g. yearly license fee)
 - □ E-bay: charges a listing fee plus a commission
- Copy someone
 - People have been in business for thousands of years...there aren't too many new models
 - □ Google: far from free and not a new model.

Funding

6. Financing the meaning

- For a University start-up you may want to look into the following: □ NSERC Idea to Innovation (\$125k-\$350k) \Box NRC IRAP (up to \$250k) \Box Tecterra (up to \$300k) \Box CICP (up to \$500k) □ISTP Canada (up to \$600k)
- Or raise money (good luck in Calgary)

7. Technology transfer out of the University This could cancel about 9/10 good ideas Failure a combination of

- Inventors and tech transfer office are on opposite ends of the spectrum
 - □ Inventor: "I invented and created this so I should own it."
 - □ Tech transfer: "We deserve X% due to that nice lab and research environment you've been using for four years."
- Both sides are somewhat correct. A balance has to be met between sides.
 - The tech transfer office can take a LONG time to agree to something – be prepared

Before you file a patent through your tech transfer office do the following

□Go to their website, read their policies

□ Ask some detailed questions:

- Are you assigning ownership & rights of use?
- If you want the patent back, will you have to repay?
- Are they going to market your IP or is that up to you?
- Do they have the knowledge & capability to take your patent to the commercial level?
- What if you want to file your patent with another firm?

- The tech transfer office should be available to you for good reasons. Typically,
 - To commercialize research coming out of the University to provide returns to the University, inventors and the community as a whole so that future research and commercialization may flourish.
 - □ Just make sure they actually follow their meaning and are not misaligned with it.

8. Three P words: Passion, Persistence, and Patience

- Like what you do
- Confront the brutal facts, get accurate information, and adjust accordingly
 - e.g. Intel left memory to pursue microcontrollers
- Be able to make decisions and follow them through with perfect alignment
- Keep faith that you will prevail in the end (if you've confronted the facts and adjusted accordingly)

Technical

A navigation product lifecycle example

Navigation status

- Continuous, accurate and cost effective navigation systems are not available
- GNSS-only
 - Not always available
 - □ Inaccurate due to multipath
- Wireless (Wi-Fi, cell location...)
 - Infrastructure is expensive and not always present
 - Sparse networks or poorly surveyed networks are inaccurate
- INS/GNSS, either
 - □ Expensive (\$20k+) & not portable
 - Or low-cost & inaccurate

- Different product lifecycles for each product.
- The following technical slides cover the T-MN which touches on many technical aspects of creating a navigation product.

A few details

Essentially a strapdown INS/GNSS with additional magnetometer and barometer

- □ INS uses low-cost MEMS (\$10-\$1,000)
- □ GNSS (single or multiple antennas)

Applications

- □ Machine control & guidance
 - Precision agriculture (heading & velocity)
 - Antenna array stabilization (attitude)
- □ Vehicle performance monitoring
- Earthworks

Pieces of the Product

- 1. System design.
 - □ Choosing sensors, GNSS and processor(s).
- 2. Hardware design.
 - Including layout, fabrication and assembly.
- 3. Operating system or kernel.
- 4. Firmware creation
 - □ Timing of the various signals in real-time.
- 5. Navigation software (offline & real-time).
- 6. End user software and display (GUI).

Customer Specs

Attitude determination product
 Technical requirement:

- 0.1-0.3 degrees accuracy required at 1,000 Hz
- Vehicle mounted
- Can be used in a variety of environments, including offroad
- □Commercial requirements:
 - Parts list must be under \$5,000
 - Cannot use ITAR or Controlled Goods

Constraints

Throughput @ 1,000 HzPerformance vs cost (MEMS + GPS)

Hardware

□ Fast clock speed on processor (1 GHz)

Microcontrollers for accurate timing synchronization and to offload the main processor for 1,000 Hz operation

Sensors and GNSS

Sensors

□IMU from Analog Devices Inc. ~ \$800

- Good MEMS gyros (avg. 15 deg/hr in run stability)
- Accels are average for MEMS
- □ HMC5883L magnetometer ~ \$30
- □ MEMS barometer ~ \$25
- GPS

Trimble BD982 with dual antennas ~ \$4,000
 0.1-0.2 deg accuracy for heading when RTK fixed
 ~60 cm accuracy for position with SBAS

The OS resides on the ARM Cortex A-8
 The OS coordinates getting the sensor and GNSS data and processing the navigation solution.
 This is all happening at high rates (1,000 Hz)

OS options

Android (not enough low-level control)
RTOS (very expensive and hard to customize)
Embedded Linux (inexpensive and customizable)

Firmware is the software in the microcontrollers that sets the timing of the sensors
 IMU: 1024 Hz
 Barometer: 10 Hz

☐ Magnetometer: 1 Hz

If the firmware is not done properly, the timing will not be correct, and the multi-sensor navigation solution will be badly affected

The core of the system □ Navigation state estimation (3D PVA) □ Sensor and GNSS error modelling □ Magnetometer calibration □ Multi-sensor filter □ Various alignment techniques □ Multi-threaded software application □ All hardware, OS and firmware has to be nearly perfect if the navigation software has any chance of performing to specification

Trusted Machine Navigator (T-MN) results

Downtown environments (multipath) No GNSS environments (INS only)

Downtown Portland

Major challenge is filtering of GPS noise

Downtown Portland (zoom)

Underground Parking Lot

Drift of INS with good initialization

INS-only solution

Does the INS drift more with poor initialization?

INS-only (zoom start)

INS-only (zoom end)

Looking forward

- Upcoming releases for consumer products in 2012
- We need smart & hard working people that are aligned with our meaning

Trusted Positioning *Positioning Everywhere*