Operating GNSS Equipment in Antarctica Experiences, Challenges and Solutions

Transition to Continuous Remote GNSS Stations

Larry Hothem US Geological Survey Reston, VA

January 26, 2007

Acknowledgements

Dr. Terry Wilson, Principle Investigator, TAMDEF and POLENET Projects Mr. Mike Willis, PhD candidate, TAMDEF Project School of Earth Sciences, Byrd Polar Research Center Ohio State University

- Background
 - IGS Stations: South Pole, Palmer & McMurdo
- Science Objectives
- TAMDEF Project (1996-2007+)
 - GPS Campaign Observation Mode
- Transition to Continuous Remote
 - Challenges
 - Science benefits
- IPY POLENET Project
 - Development of a power & communication system
- Scenes at and enroute to station sites

MCM4 – IGS station in McMurdo Antenna radome and condensation or ice

AMUNDSEN-SCOTT SOUTH POLE IGS Station AMU2

PALMER STATION IGS Station PALM

IGS Station CRAR McMurdo Station, Antarctica

Installed December 1998 -- GPS and GLONASS Observations

West Antarctic Rift system

East Antarctica

Ross Sea

NASA GSFC Scientific Visualization Studio

Intraplate deformation: Rifting in the Antarctic Interior? Glacial Isostatic Adjustment

<u>TransAntarctic Mountains</u> <u>DEFormation Monitoring</u> Network (TAMDEF)

South Victoria Land

The <u>TransAntarctic Mountains DEF</u>ormation Project

The TAMDEF project is a joint <u>OSU</u> and <u>USGS</u> program to measure bedrock motion in the Transantarctic Mountains of Southern Victoria Land.

The bedrock is slowly moving in response to changes in the mass of the Antarctic Ice Sheets. As the weight of the ice sheets changes the Earths surface bends and the mantle flows to accomodate the new ice configuration.

We are also measuring the tectonic motion over the nearby Terror Rift, an offshore zone of faulting.

We use precision GPS measurements separated by several years to test the predicted rates of motion. The eighth and final seasons of measurement was completed in 2006, in this the most extensive ice-free area on the Antarctic continent.

http://www.geology.ohio-state.edu/TAMDEF/

THE TAMDEF PROJECT

Transantarctic Mountains Deformation Monitoring Network

- Initiated in 1996
- Use GPS to measure bedrock crustal motions
- Document neotectonic displacements due to:
 - tectonic deformation within the West Antarctic rift (Terror Rift)
 - mass change of the Antarctic ice sheets
- Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism are tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations

The Campaign Network

1996-2000

- 24 sites
- Rock-pins
- Short-duration measurements

Early Campaign Experiences

- Blue board insulated wooden boxes
- 80AH gel cells power Z12 for @15 days
- 60W solar panels extend life of batteries
- Receiver memory limited in capacity
- Choke ring antenna standard
- Level mounts fixed height
- Monuments stainless steel pins
- Pins set in bedrock
- Micro-footprints critical to project

Antenna Dorne Margolin Choke Ring

Cape Royds (ROY) Local Deformation Micro-footprint

Air Photo: TMA-2565-V (12-09-83)

Test for monument stability

Cape Crozier Seasonal Campaign GNSS Stations

Esser Hill & Bettle Peak Seasonal Campaign GNSS Stations

Hidden Valley Site for fault surveys

Beacon Valley Site for fault surveys

Challenges

Challenges:

TAMDEF site- Minna Bluff

Rime ice on antenna....effect?

Deverall Island

- Seemingly good bedrock.
- 3.2 cm deformation!
- Eccentric marks still useful.

Network expansion to south – 2003

• Used newer receivers to record up to 100 days of data per season.

• Installed select continuous trackers with robust monuments.

IMPROVEMENT: Long-duration campaign measurements

ryn0 Long. slope: 9.8 +/- 0.1 mm/yr; RMS scatter: 4.2

Longer duration campaign data: SIGNIFICANT BENEFITS

- Weather effects previously hidden.
- Water vapor studies.
- Captures Ionospheric disturbances.
- Observation overlap enhances analysis.

New solar max ~ 2010. lonosphere will get noisier. New frequencies will help.

ISES Solar Cycle Sunspot Number Progression Data Through 31 Aug 06 175 150 125 Sunspot Number 100 75 50

100-<u>99</u>

Jan-98

_96

Upper Predicted Threshold

Jon'

100-00

Jon-01

Monthly Values

Jan-02

Jan-03

Jan-04

Jan-05

Smoothed Monthly Values Updated 2006 Sep 6

,95 You.

NOAA/SEC Boulder,CO USA

Jan-07

Jon-08

190-00

JPL/NASA GPS Remote Stations

Two stations were installed on **Mount Coates** (1996 & 1997 field seasons) and **Mount Cocks** (1997 field season)

Mount Coats (1)

Mount Coats (2)

JPL/NASA Project – 1998-2000

MBL RUTONOMOUS GPS STRTION

Initial Experience

- In the 2000-2001 austral summer, members of the USGS-LINZ survey field team installed a low-power remote Global Positioning System (GPS) station upon bedrock at the Cape Roberts peninsula of southern Victoria Land, Antarctica.
- The station is tied to the nearby tide-gauge operated by Land Information New Zealand (LINZ).
- ROB1 station is situated upon a TAMDEF project benchmark ROB0.

Installation at Cape Roberts (ROB1) December 2000

Remote Observatories

GPS: USGS/TAMDEF

Enabling **Technologies:**

•Solar •Wind •Low-power •High-capacity storage •Satellite communications

IMPROVEMENT: Continuous GPS measurements at remote sites

Fishtail Pt.: USGS/TAMDEF

GNSS Equipment

Temperature Sensor for top of box (Avatel)

2001-2002 Installations

To Antenna, Second Battery Bank and Solar Panels

JNS GPS Receiver —

JNS EURO-80 Card

Low Voltage Disconnect (Sun Selector) Solar charge controller (Sun Selector)

Temperature Sensor for bottom of box (Avatel)

Vacuum Panel R-80 Insulated Enclosure

Cape Roberts GNSS CORS Remote Station ROB4

Success with year round CGPS measurements

Davs after Jan. 1, 1996

- **Performance of TAMDEF CGPS:**
- Quite reliable.
- Several sites have worked year round.
- Challenges remain.

TAMDEF Remote CGPS Stations

<u>Cape Roberts</u> (Coastal site) Co-located with tide gauge.

Mount Fleming (Mountain site) LOS radio system.

Fishtail Point (Coastal site) Iridium Communications system.

Franklin Island (Maritime environment)

Westhaven Nunatak (Plateau environment)

Lonewolf Nunatak (Mountain site) Extreme conditions

Cape Roberts:

LINZ/USGS funding. Run by OSU.

CHALLENGES

low storage capacity initially. Drifting in winter. Vibration worries. Vac-panels broken.

SOLUTIONS

New receiver, more storage. New panels, redundant power. New monument. LOS data link, site is monitored.

Cape Roberts More than 1700 days of data. Runs to -45C.

-50

Mount Fleming Continuous GNSS Remote CORS Station

Mount Fleming:

High Mountain – very cold, windy site.

CHALLENGES

High winds. Difficult access. Problematic receivers. Bad wiring. SOLUTIONS

LOS data link – monitoring receiver Systems integration drive.

Mount Fleming:

- >600 days data
- Outside temps to at least -40C. Winds to 140kph (90mph).
- Faulty wiring temperature of system reached 100+ C
- Power system replaced in 2005

Fishtail Point Continuous GNSS remote station

Fishtail Point:

Windy site near Skelton Glacier.

CHALLENGES

Access is difficult. No LOS to McMurdo. Problematic receiver. Wind load on antenna. SOLUTIONS

New receiver. Iridium satellite link. Many many batteries. New monument.

Fishtail Point:

1250+ days of data. Works to -40C
Winds moved 200 kg enclosure.
2nd attempt at Iridium works well.
Timer resets Iridium modem every 4 days.
No interference between Iridium and GPS seen.

Franklin Island: Marine environment CHALLENGES Very difficult access. 1st year, perfect! 2nd year, failure 😕 **Rime on antenna?**

SOLUTIONS (Future)

Install late model GNSS Data link: LOS to McMurdo Multi-year unattended operation?

Westhaven Nunatak Plateau site, very cold

Challenges

Extreme cold Difficult access 1st year perfect! 2nd year failure ⁽²⁾ Temp sensors failed

Solutions (future)

Lightweight station New logistics plan Vac-panel box helps

Lonewolf Nunatak Continuous GNSS remote station

Lonewolf Nunatak: Extremely windy and cold site

CHALLENGES

Temp sensors failed Wind destroyed system....Twice. Battery charger failed SOLUTIONS Strongthoned color

Strengthened solar panel frame. Redundant power. Seal system better.

Lonewolf – A development driver.

- Design redundancy needs improvement.
- Systems need strengthened against storms.

Light weight systems desirable.
Wind power ③

Spindrift in sealed enclosure.

Spindrift in sealed enclosure following year.

Panel ripped off agai

Lower profile - reinforced

solar panel frame

Site worked even though the environment was extremely difficult.

MAJOR IMPROVEMENT Communications systems

Monitoring Data Quality

Archived at UNAVCO

Possible to monitor receiver state of health and basic environmental variables.

SV+						-+	SV
23 L	L L+00000000000)+m	mLoocococo+	m	23
2 +r	m L+00000000+			1 -	L+000000000000000000000000000000000000	01	2
13 00	00-m L+00		000000000++		mmooooooo	0	13
6100	6100-0+L		L+00000000+L		L+0000000	01	6
16 00	16 00-000++		LL0000000000+m		_L+000	01	16
10100	o-ooo+mL		L+0000	000000++	Lmooood	01	10
27100-00000+m			L+0000000000++_		L+	01	27
7100-00000+L_			LL+000000000mm		L+c	01	7
8 m+-0000000+m			_L000000000000000000000000000000000000		L+	LI	8
21 00-0000000L_			m+c	m+00000000	_Lc	100	21
29 L+-000000000+m				L+00000000000	p+	_1	29
3 L+-000000000++			L+c	m+0000000000+m		1	3
26 L1	L-cccccccccc+mL			LL+000000000	00++	1	26
181	_+000000000000+L			L+000000000	p++	1	18
191	L+00000000000++			L+00000000000	+mL	1	19
221	LL00000000000+L_			m+00000000+m			
281	_Loococco++			_Locococococo+m 2			28
91	LLoooooooooo+mL			LL+000000000+LL			9
111	_L+coccccccc+L			LL+00000000+mm			11
141	L+00000000000mm			LL+00000000++			14
171	L++00000000++			L+00000000000+m 17			17
11	L+00000000000+m			mL00000000+m^ 1			
51	Lm+00000000++L			m+000000000+L 5			
201	LLcccccccccc+L_			Lm+00000000+L 20			
301	LL+00000000+m			LL+cccccccccccc+L 30			
251	_L0000000000+m			L+00000000+m_ 25			
41					Lmoccocccccc+m	-1	4
-dn							-dn
+dn							+dn
		8999aa99aaa	a9999aa	a9abbbbaaaaaaa	a97789899aaa9aa999999	81.	+10
	00 000000 00	0	00 0	0 00000000	0 0	- 21	Pos
Clk							Clk
112.5						600	
10.000	:00.000				23:59:3		
2006 3	Sep 22				2006 5	ep	22
*****	** <mark>******</mark> *****						
	RINEX file(s) :						
	RnxNAV file(s) :	/ap/data/en	der/que	ue/.rinex/.949	9783/ftp42650.06n		
*****	**********						
4-chai	racter ID	: FTP4 (#	= 66062	M002)			

: ASH700936D M

Antenna tvpe

(fw = 1.1-2)

SCIS (# = CR13562)

TAMDEF Network and Program

- Built upon Campaign experiences.
- Used simple technologies (no moving parts).
- On the whole, highly successful.

Antarctic realities

CONTINUOUS CHALLENGES

- Long-term autonomous operation
 - Reliable, low-power communications
- Continuous operation through polar night
 - Lightweight power systems
- Effective operation in very remote locations
 - 'Antarctic-optimized' system

Diverse environments for deployment. Suggest standardizing systems, but making them customizable.

Average annual Wind speed.

Bromwich, 06

Average annual snow accumulation.Coastal sites need taller monuments.

Solutions under investigation:

Data Communications

- Satellite modems
- Line Of Sight.
- Fly-Over Download.

Lightweight Power

- Wind Generators
- Lithium Primary Cells
- Lithium Secondary Cells
- Fuel Cells
- New PV technology
- Environmental Hardening
- Frame designs.
- System integration
- Hyper-Insulation
- Active heating

Power Generating

and

Data Communications

In-situ testing is *critical*.

Testing underway:
Battery performance
Insulation benefits
Power draws

High-R value enclosures work well, *if system is running*.

Wind Generator Test in Situ (Erebus, 3400 m)

TRC Repeater (NKB, LEH Stations)

Wind Power Generators

APT	Vertical Axis Wind Turbines
Contact	Strong - Safe - Silent, from 60w to 1200w
Oerlikon	These ecological wind turbines, primarily for battery charging, can
Windside	be used for lighting, water pumping, electric systems in remote area homes and bach's, telecommunication, radio, telemetry and data logging.
SunWare	Durable, aesthetic design, safe around people, constant energy production (in storms and low winds), no gearing system or
Studer	dripping oil, AC output for low cabling voltage losses.
Solarex	
Vision	
Intro	

Tested wind generator performance under Antarctic conditions.

Also tried Windside.

Forgen 500s used by BAS for last three years. No failures. Run to -65C.

Battery testing

- Lithium (non rechargeable cells) to be tested Jan 07, McMurdo and South Pole
- Many manufacturers available
- Weight savings are substantial
- But, large bank of batteries are hard to make & ship
- And, cost is substantial!

HEDB Battery corp. 2400 Amp Hours. 140 Kg.

Battery comparisons:

System Characteristic	Lead Acid	Nickel- Cadmium	Nickel- Hydrogen	Silver- Zinc	Lithium-lon
Cell Specific Energy (Wh/kg)	30	30	35	~100	130-140
Cell Energy Density (Wh/lit)	60	100	50	~150	250-300
Specific Energy (Wh/kg) at Battery	25	25	25	75	100
Energy Density (Wh/lit) at Battery	55	80	40	100	200
Cycle Life (30-40% DoD)	~ 1,500	30,000	30000-60000	<100	> 15,000
Wet life (Storageability)	~7 years	~10 years	> 10 years	2 years	5 years
Self-Discharge (per month)	5-10 %	15%	30%	15-20%	<5%
Low temperature Performance (-20°C)	Poor	Moderate	Moderate	Moderate	Excellent
Temperature Range, °C	-10- 30	-10- 30	-10- 30	-10- 30	-20 to +40
Charge Efficiency %	85%	80%	80%	70%	~100%

JPL

Li Rechargeable.

Li on Mars rovers. Design for 90 days still running after 950 days.

Pack Performance

Capacity = 6.6 Ah (at 23°C) Watt-Hours = ~ 95 Wh Specific Energy = ~ 145 Wh/Kg Cycle Life = > 80% after 300 cyles Wet Life = ??? (Life data needs to be verified)

Estimated Battery Performance

(11 x 4s10p Batteries in Parallel) Voltage = 11 - 16.4 V Capacity = > 845 Ah (at 23°C) Watt-Hours = 12,160 Wh (at 23°C) Specific Energy = ~ 120 Wh/Kg Battery Weight = ~ 100 Kg <complex-block>

95 Wh Smart Battery Pack

MP-08 Battery Management Module

Environmental hardening.

Frames must be:

- Quick to build.
- Light.
- Drift proof.
- Strong.

Reinhard Dietrich – Peter I Oye

Franklin Island

Niwot Ridge @ 3500m

Component Testing.

- System integration
- Cold tolerance
- Receiver performance
- Weight reduction
- Help minimize logistics

7.5W installation Mike Rose (BAS)

UNAVCO Cold Chamber (Bjorn Johns)

Monument Design

- Quick to install.
- Various heights available.
- Anchored by 4 X 40cm expansion bolts
- Bolts set using epoxy.
- Demonstrated stability.
- Zero offset for antenna.
- Multipath tests needed.

Conclusions

- Continuous stations critical
- Minimize logistical costs by:
 Light weight strong equipment.
 Communications.
- Different challenges around Antarctica.
- Good monuments needed.

Suggestions

- Ways to minimize logistical costs further?
- Standardize on monument.
- Open documentation.
- Equipment development dialogue?
- Website equipment development page.

What is POLENET?

- **POLar Earth Observing NETwork -** involving people from 24 nations
- Aims to dramatically improve the coverage of many different kinds of geophysical data across the polar regions of the Earth.
- Core activity of the International Polar Year (IPY) 2007-2008.
- Overcomes scarcity of observational systems in the Earth's polar regions and will provide a legacy in observational infrastructure.
- Technological capabilities in deploying autonomous systems in extreme environments will be developed and extended new datasets will be made available to the global science community.
- Scientists, engineers, field assistants and students are deploying new GPS instruments, seismic stations, magnetometers, tide gauges, ocean-floor sensors and meteorological recorders.
- Enable new research into the interaction between the atmosphere, oceans, polar icesheets and the Earth's crust and mantle.
- New insights into the Earth's magnetic field and deep Earth structure will be possible from the important vantage point of high-latitude geophysical observatories.

POLENET SCIENCE

GEODETIC OBSERVATIONS SEISMOLOGY **GLACIOLOGY OCEANOGRAPHY MAGNETOMETERS** GRAVITY **ATMOSPHERIC OBSERVATIONS METEOROLOGY**

Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica

January 2006

Submitted by

UNAVCO and IRIS on Behalf of the Polar Community

Submitted to

Major Research Infrastructure and Office of Polar Programs Division of Earth Sciences National Science Foundation

Build on decade of experience with autonomous station technology in Antarctica to achieve reliable, modularized station support systems

Technology proven in Antarctica	Advances to be achieved through this MRI effort		
Quasi-continuous and logistics- intensive GPS and seismic data collection	Reliable year-round data collection, minimizing logistical cost of installation, operation, and maintenance; "plug-and- play" deployment		
Geodetic GPS receivers	Selection of next generation GPS receivers (low power, high memory, remote controllable, robust power management)		
Seismic sensors and datalogger	Develop cold sensor testing and harden data recording system		
Line of sight radio links	Higher bandwidth technology, flyover data retrieval		
Solar power	Standard components, and improve ease of field deployment		
Power control components	Integrated, robust power controller packages		
Iridium satellite data modems, intermittent operation	Robust and efficient Iridium data retrieval, sensor- communications integration		
Wind turbines with highly variable success	Select already proven units, test and optimize for different environmental conditions		
Sealed lead acid batteries	Optimal battery selection, quantified extreme cold performance, lithium battery backup		

Technical Requirements – "low" power consumption is a critical design requirement, as well as state-of-the-art in data storage, communications, and system integration.

Operating Mode	Allowable power use	Data telemetry requirement	Data storage Requirement
GPS data collection	2.5W	1Mb/day average	27 months = 830Mb
Seismic data collection	2W	1Mb/day (SOH and events) 15Mb/day average (full data retrieval)	27 months =12Gb
Satellite data link (NAL Resesarch Iridium)	1W/Mb	>2Mb/day	na
Radio data link (FreeWave 0.5W/Mb >10		>16Mb/day	na
Housekeeping overhead 0.5-1W		na	na
Lowest power configuration (single sensor, no winter data comms) 2.5W year- round		1Mb/day average, store-and-forward	Up to 12Gb
Combined GPS and seismic (with low bandwidth link) 7W year- round		2Mb/day average, store-and-forward	830 Mb + 12 Gb
Highest power configuration (combined sensors, year- round large data volume comms)		2Mb/day year-round	830 Mb + 12 Gb

Thanks to :	National Science Foundation Raytheon Polar Services
	PHI Helicopters
	UNAVCO
	US Coast Guard

OSU: the late Ian Whillans, Erik Venteris, Jan Wuite, Stephanie Konfal, Jerome Hall, Beth Demyanick, Dorota Brzezinska, Esteban Vazquez

USGS: Bob Glover, Brad Johnson, Jane Turner, Jerry Mullins, Mike Starbuck, Bill Smith.

LINZ: Graeme Blick, Merrin Pearse, Matt Amos, Tony Bevin, John Richie, Sarah Morris, Don Grant, Geoff Linnell, Jeremy Palmer.

PGC: Tom James, Stephane Mazzotti, John He

Geoscience Australia: John Manning, Gary Johnston, Jim Steed

Italy: Alessandro Capra, Francesco Mancini, Luca Vittuari, Stefano Gandolfi, Monia Negusini, Antonio Zanutta, Pieguido Sarti.

Other: Mike Bevis, Mark Schenewerk, Janet Thomson

