Thank you for inviting me to Calgary

On Location at Stanford University

by Per Enge (with the help of many)
May 29, 2009

With Gratitude to the Federal Aviation Administration

from Misra and Enge, 2006

GPS + Galileo + Compass + GLONASS 134 Navigation Satellites?

Future GNSS Signals

April 10, 2009 at 04:58 Pacific Time

Outline

- Approach & Landing of Civil Aircraft
- Gravimetry Using Cold Atoms
- Geo-security

Approach & Landing

Worldwide approach capability with no airport equipment. Worldwide landing capability in all weather.

Robust against RFI (scheduled, accidental or malevolent).

Safety: Faults & "Rare Normal" Events

LPV-200 Coverage on February 27, 2009 (from the FAATC live feed)

Near Term GBAS Installations (from Carlos Rodriguez to RTCA)

Truncation of the Error Tail

PRN 1 Bias on L1

Evolution of GNSS-Based Safety

Dual Frequency WAAS Convert Orange to Green

System Definition ARAIM for 2020

Trade Between Constellation Strength & Multiplicity of Ground Monitors (from Juan Blanch)

Civil monitoring is a trade between:

- Constellation size
- Robustness to SV failures
- Network size (URA bounding)

ARAIM 99.5%	24-1	24	27-1	27	30-1	30
coverage						
No Real Time	3.7%	27.5%	9.56%	87.9%	79.8%	99.6%
Monitoring						
8 stations	50.8%	88.3%	71.5%	96.7%	98.7%	100%
38 stations	71.2%	98.9%	90.0%	100%	99.9%	100%

Stanford Atom-based Inertial Sensors 5 m/hour Versus 500 m/hour (from Stanford's Mark Kasevich)

Cesium atoms are proof masses.

Pulses of laser light measure relative motion between atoms and case.

Mobile Gravity Gradient Survey (from Mark Kasevich)

RTK from Trimble

Gravity Gradient Survey of End Station III (from Mark Kasevich & Jeff Fixler)

Gravity Meter (from Helicon Publishing)

Airborne Gravimetry (from M. Dransfield, FUGRO)

Ore deposits

Airborne Gravimetry

- Atom gravimeter to measure gravity field at 10⁻⁶ level
- High performance GPS or laser to decouple platform motion
- Overfly region of interest
- Water table monitoring
- Homeland security
- Resource discovery & management (oil/mineral)

Reference System Requirements

- Blimp dynamics
 - equivalence principal
 - remove blimp acceleration from gravity measurements
 - mm accuracy for 100 second
- Terrain to estimate nominal gravity
 - accuracy to fraction of feature size
 - sub meter position
- X band
- Visual

Geo-encryption (from Stanford's Di Qiu)

Tamper-proof Hardware & Self-Authenticating Signal

Parking Lot Attack

Attacker

- nearby
- hopes that his received data falls within geo-fence
- efficacy improves with proximity

Smart Parking Lot Attack

Smart Parking Lot Attack

Multiplicity of Signal Characteristics

29

Conclusions

- Potential utility provided by new PNT technology is stunning.
- International cooperation is needed to fully realize these benefits.