

Stationary, Cyclostationary and Nonstationary Analysis of GNSS Signal Propagation Channel

Shashank Satyanarayana

Position, Location And Navigation (PLAN) Group
Department of Geomatics Engineering, University of Calgary
ION Alberta Lunch Meeting
22 Oct 2010

Objectives

- Empirical characterization of GPS signal amplitude under various scenarios such as urban, semi urban, foliage and indoors
- Empirical validation of statistical models for signal amplitude such as single and multiple state models
- Stationary, cyclostationary and nonstationary analysis of GPS signal amplitude under harsh environments

Background

Classes of Stochastic Processes (Gardner, 1994).

Stationarity in wide-sense

$$m_x = m_x(t_1) = m_x(t_2)$$

 $R_{xx}(\tau) = R_{xx}(t_1, t_2) = R_{xx}(t_2 - t_1)$

 Cyclostationarity in a widesense

$$m_{x}(t) = m_{x}(t + nT_{0})$$

$$R_{xx}(t,\tau) = R_{xx}(t + nT_{0},\tau)$$

- ☐ Cyclic Autocorrelation Function (CAF)
- □ Spectral Correlation Density function (SCD)
- Non-stationary signals
 - □ Short-Time Fourier Transform
 - Wigner-Ville Distribution

Methodology

♣ Data aiding from a reference receiver. Synchronous data were collected from two receivers with one antenna in a relatively open sky condition and another being in harsh environment.

Signal analysis at the correlator output level

Test Setup

Open Sky Scenario

Open Sky with Single Reflector (1/3)

20 Feb 2009, 7:30 pm (1 hour)
West Gate, CCIT

Open Sky with Single Reflector (2/3)

Open Sky with Single Reflector (3/3)

Open Sky with Multiple Reflector (1/2)

Open Sky with Multiple Reflector (2/2)

Figure 9.18 Series corresponding to diffraction and multipath

(Fontan, 2008)

Foliage: Static/Dynamic

Indoor Data(Lab): Static/Dynamic

Conclusions

- Various single and multistate parametric models for signal amplitude variations were validated
- Possibility of applying cyclostationary and nonstationary analysis for the characterization of GNSS signals harsh scenarios were explored
- Under static scenarios, first order periodicities were observed in the presence of a strong reflector
- Channel coherence time of up to 4-5 minutes were observed in static scenarios.
- Signal variations become more random when the receiver is in dynamic condition and the amplitude can be more easily described using parametric models

