

Twin IMU-HSGPS Integration for Pedestrian Navigation

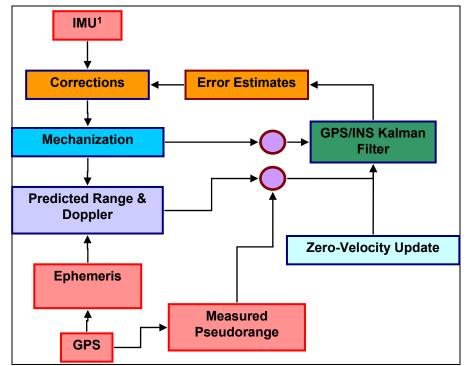
Jared Bancroft

Position, Location And Navigation (PLAN) Group Department of Geomatics Engineering University of Calgary

> Alberta ION Chapter Meeting 3rd Oct 2008

Pedestrian Navigation Applications

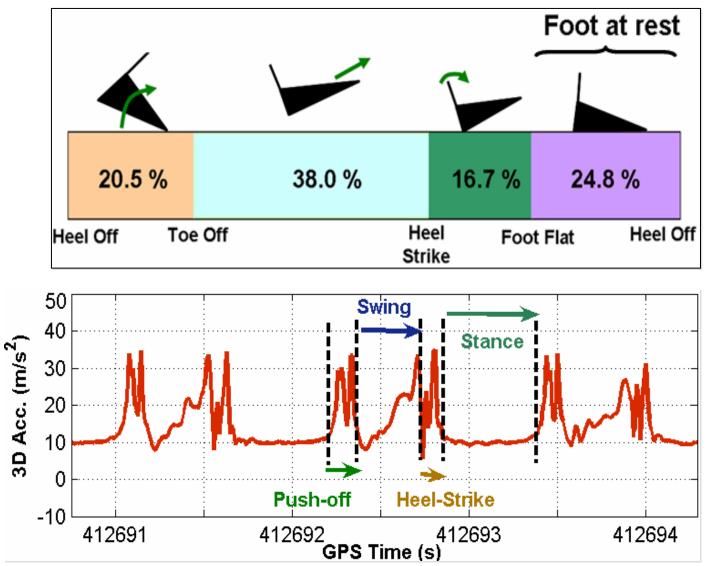
- Locate personnel in any conditions
 - Military applications
 - Fire fighting, police force and emergency services
 - Navigation in urban areas
 - Location Based Services (LBS)
- Typical Environments
 - Forest canopy
 - Urban canyons
 - Indoors
 - Underground parkades



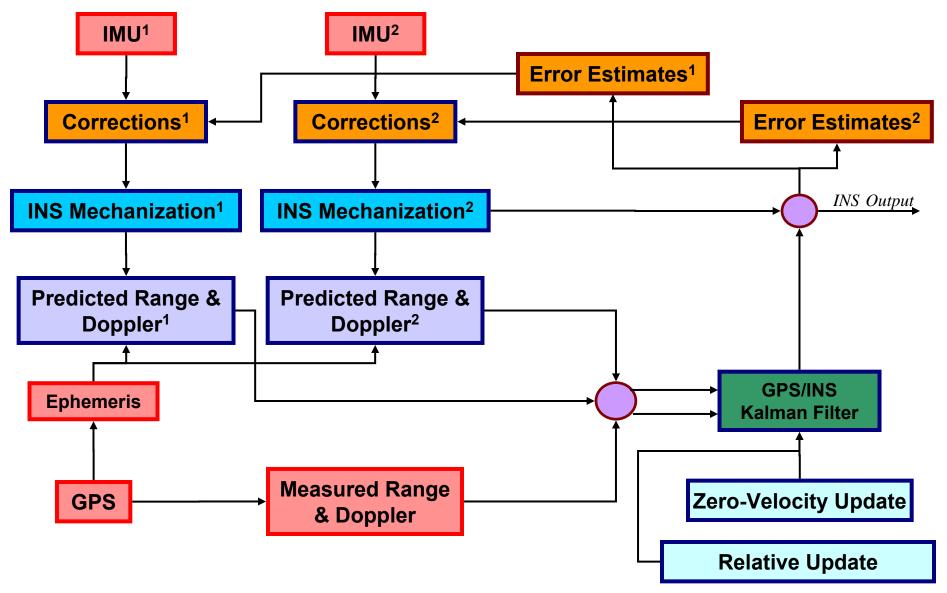
Why Use 2 IMUs?

- Because 2 is better than 1!
- Better accuracy in GPS limited areas
- Improving availability for users
- Improving reliability for users
- In the event of an IMU failing or temporary data outages, the system can operate in a single IMU configuration

Review of Single IMU Integration


- 29-state filter
 - Position, Velocity, Attitude (9)
 - Accelerometer and Gyro
 - **Biases** (Gauss Markov) (6)
 - <u>Scale Factor</u> (Gauss Markov) (6)
 - <u>Turn on Biases</u> (Random Constant) (6)
 - GPS Clock Errors (2)
- Tight integration approach
- Zero Velocity Updates (ZUPT) performed when foot is at rest during gait cycle
- GPS observations weighted using C/N₀ ratio

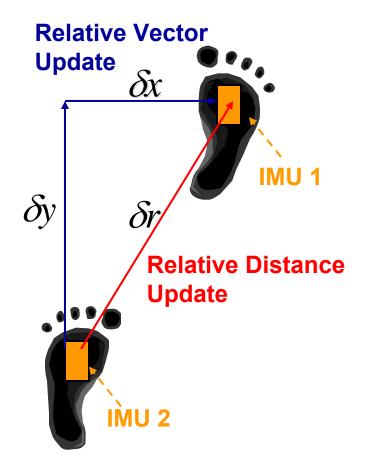
MEMS Accelerometer and Gyro


Stance Phase Detection

From: Godha, S., G. Lachapelle and M.E. Cannon (2006) Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment. Proceedings of GNSS06 (Forth Worth, 26-29 Sep, Session A5), The Institute of Navigation, 14 pages.

Twin IMU Integration Scheme

Twin IMU Integration


- Two single IMU filters are stacked to form a larger twin IMU filter – <u>a 56-state model</u>
 - Each block within the filter (for each IMU) contains its own set of states, transition matrix, design matrix, covariance matrices, etc.
 - The twin filter can be accessed as a unit, or individually, as necessary

Prediction Cycle

$$\begin{bmatrix} \partial x_{k+1}^{1} \\ \partial x_{k+1}^{2} \end{bmatrix} = \begin{bmatrix} \Phi_{k,k+1}^{1} & 0 \\ 0 & \Phi_{k,k+1}^{2} \end{bmatrix} \begin{bmatrix} \partial x_{k}^{1} \\ \partial x_{k}^{2} \end{bmatrix} + \begin{bmatrix} w_{k}^{1} \\ w_{k}^{2} \end{bmatrix} + \begin{bmatrix} w_{k}^{1} \\ w_{k}^{2} \end{bmatrix} \xrightarrow{\mathbf{x}(t) = F(t)\mathbf{x}(t) + G(t)w(t)} \\ \mathbf{Update Cycle} \\ \begin{bmatrix} \partial z_{k+1}^{1} \\ \partial z_{k+1}^{2} \end{bmatrix} = \begin{bmatrix} H_{k+1}^{1} & 0 \\ 0 & H_{k+1}^{2} \end{bmatrix} \begin{bmatrix} \partial x_{k+1}^{1} \\ \partial x_{k+1}^{2} \end{bmatrix} + \begin{bmatrix} \eta_{k+1}^{1} \\ \eta_{k+1}^{2} \end{bmatrix} \xrightarrow{\mathbf{System Observation Model}} \\ \mathbf{x}(t) = H(t)\mathbf{x}(t) + \eta(t) \\ \mathbf{x}(t)$$

Twin IMU Relative Position Updates

- <u>Relative Vector Update</u>
 <u>(RVUPT)</u>
 - Uses the vector between the feet
 - Observations derived from integrated step length (y), approximate width between feet (x), and assumed zero elevation difference between feet (z)
- <u>Relative Distance Update</u>
 <u>(RDUPT)</u>
 - Uses the magnitude of the relative vector (r)

Relative Vector Updates (RVUPT)

- The observations are the vector between the feet derived from the step length
- The rear foot, which is just about to enter the heel off stage forms the local frame
- The relative vector is rotated into the ECEF frame via a rotation matrix
 - The weakness of this update lies in the error of the rotation matrix, in particularly the heading error

$$\left(\hat{\overline{r}}_{IMU_1} - \hat{\overline{r}}_{IMU_2} \right)_{3x1} - \delta \widehat{\overline{r}}_{3x1} = \begin{bmatrix} I_{3x3} & 0_{3x24} & -I_{3x3} & 0_{3x24} & 0_{3x2} \end{bmatrix} \delta \overline{x} + \overline{\eta}_{\delta r}$$
$$= H \delta \overline{x} + \overline{\eta}_{\delta x}$$

Test Data Collected

- A tactical grade IMU was used to provide a reference solution (NovAtel OEM4 + HG1700 1 deg/hr IMU)
 - Processed with RTS Smoothing to provide < 6 m 3D (1σ) accuracy indoors
- HSGPS (SirfStarIII Receiver) @ 1 Hz
- MEMS IMU (x2) (Cloud Cap Technology's Crista)
 @ 100 Hz

IMU Specifications

- •2 deg/s Gyro bias
- •0.2 m/s² Accelerometer bias

MEMS Accelerometer and Gyro

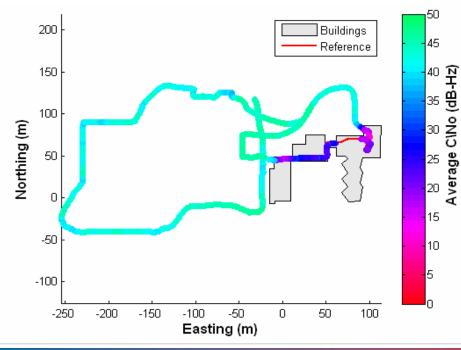
Trajectory of Data Collection

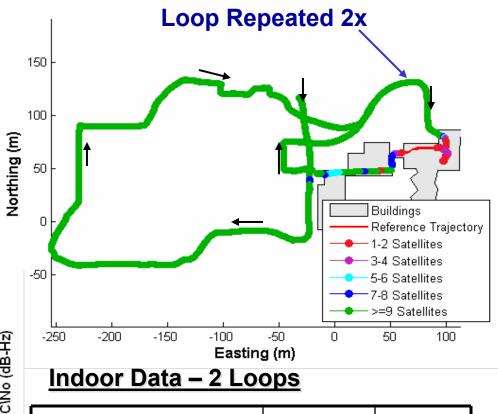
High multipath from building

Added noise from green leaved trees

Green leaved trees reducing observability

Walking in bushes


Extreme multipath in building with low C/N₀

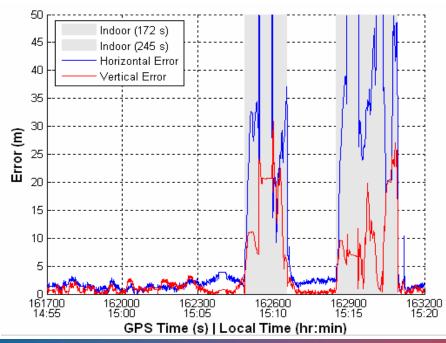


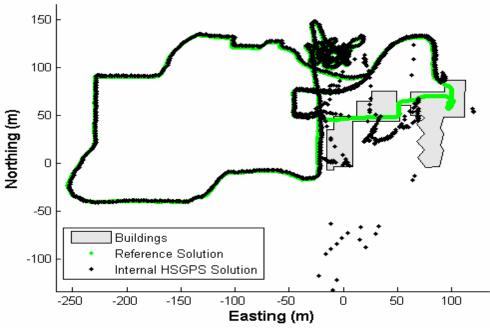
Satellite Observability and Signal Strength

Outside Data

- **Outside under leaved trees**, receiver continuously tracked more than 9 satellites
- Average C/N₀ outside is • 41 dB-Hz, with occasional intervals ranging 35 - 39

Indoors	172 s	245 s
Satellites Tracked	0 - 8	0 - 8
Complete Outages	53 s	62 s
C/No (dB-Hz)	10 - 27	10 - 29



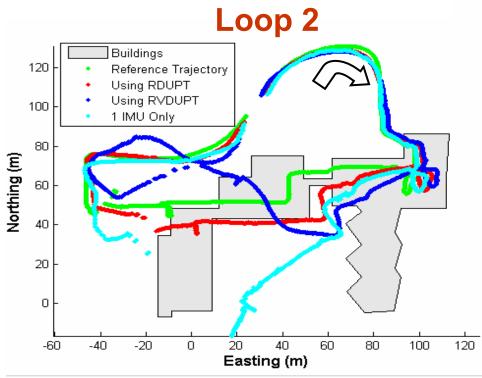

12 of 18

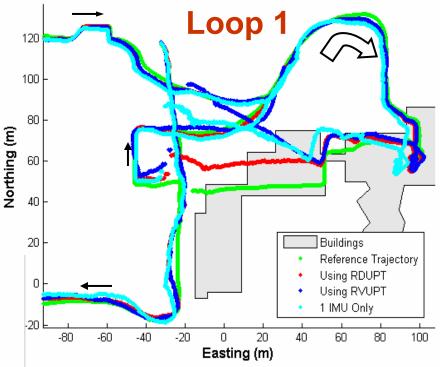
GPS Only Navigation Solution

Outside Data

- HSGPS compares very closely with reference trajectory
- 1.6 m mean horizontal error
 - 1.7 m RMS
- 1.0 m mean vertical error
 - 1.2 m RMS

Indoor Data

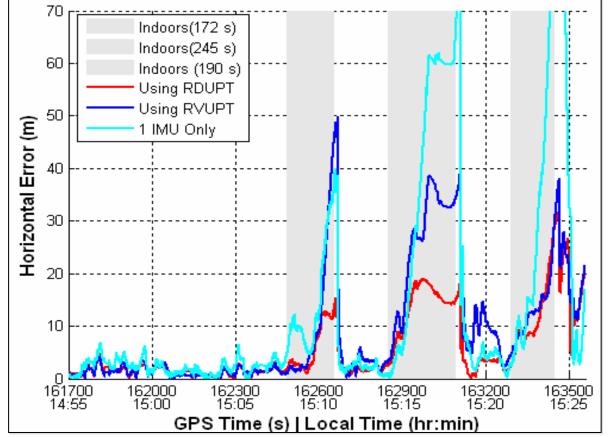

An erroneous solution


Indoors	172 s	245 s
Mean Hz Error (m)	68.3	65.5
RMS Hz Error (m)	98.3	93.9
Mean Vt Error (m)	15.1	8.2
RMS Vert Error (m)	16.5	13.8

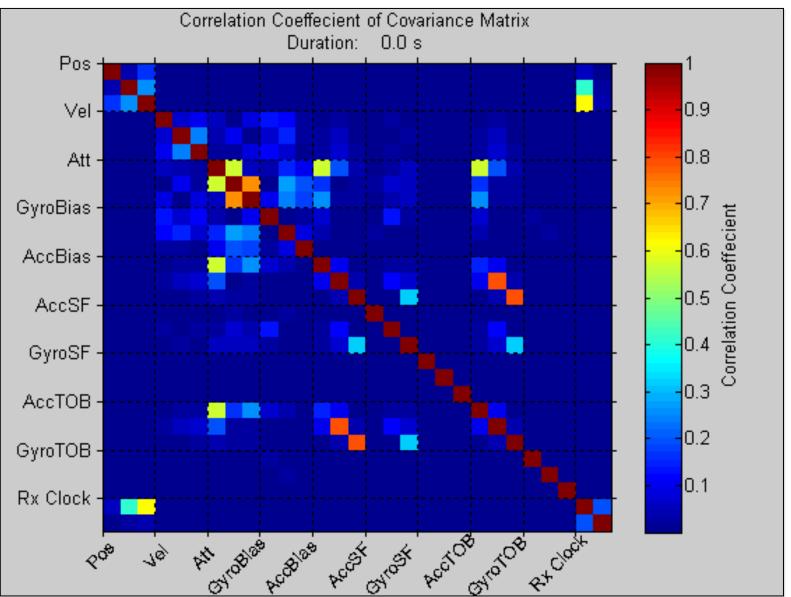
Twin IMU Navigation Solution

Outside Data

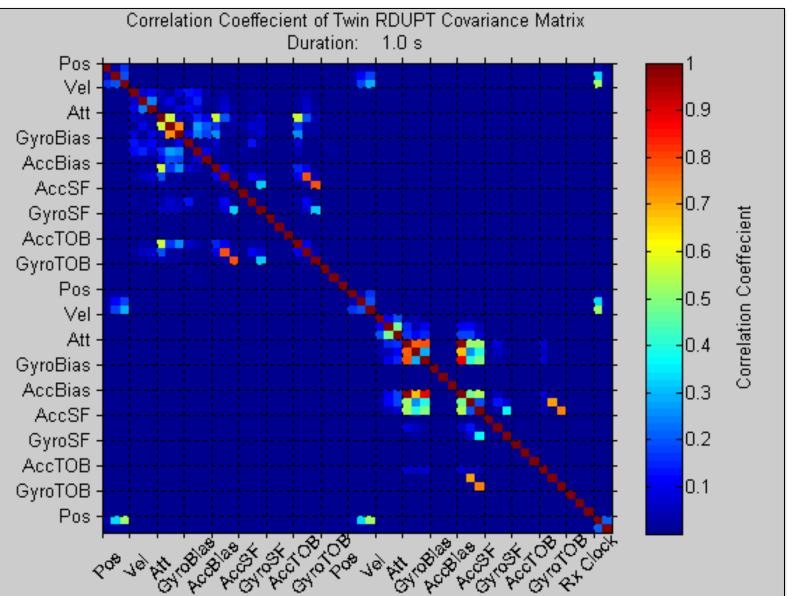
 Twin IMU follows the GPS solution and provides similar results to that of a GPS only filtered solution



Inside Data


- Different processing strategies provide different results, RDUPT providing the lowest error
 - Second time around loop errors increase

Twin IMU Navigation Error



Processing Strategy	Loop 1	Loop 2	Loop 3	Improvement
Processing Sudleyy	Max Error (m)			Factor
RDUPT	15	19	32	3.5
RVUPT	50	39	38	2.9
Single IMU	40	80	120	1.0

Correlation of Single IMU

Correlation of RDUPT Twin IMU

Conclusions

- Implementing a twin IMU filter for pedestrian navigation was shown improve navigation in GPS reduced areas by a factor of 2.9 - 3.5
- Two methods were used to relate the IMUs relative position and provide an update to the filter
 - Relative distance (RDUPT)
 - Relative vector (RVUPT)
- Correlation induced from relative updates between IMUs is negligible