

School of Engineering

Precise Point Positioning and Path to Mass-Market Applications

Yang Gao, University of Calgary

ION Alberta Section Calgary, Alberta, Canada, May 5, 2020

- Precise Point Positioning (PPP)
- Mass-market Opportunity for PPP
- Technology Advances and Gaps
- Path to Mass-market Applications
- Latest Progress
- Summary and Looking Ahead

Precise Point Positioning (PPP)

precise positioning with a single GNSS receiver!

✓ State-Space (SSR) Error Corrections

- Orbit and clock corrections
- Atmospheric corrections
- Bias corrections
- ✓ Advanced Positioning Algorithms
 - Phase measurements as principal observable
 - Positioning models
 - Integer ambiguity resolution
 - Augmentation techniques

Precise Point Positioning (PPP)

PPP Applications

- ✓ offshore dynamic positioning
- ✓ agriculture

✓ scientific and engineering applications

- Geodetic positioning
- Airborne mapping
- Deformation monitoring
- Meteorology
- Space weather
- Timing

. . .

Beyond positioning

۲

Mass-market opportunity for PPP

Market demand

Many mass-market applications require precise position information

@2020 Yang Gao

Mass-market Opportunity for PPP

Road and LBS dominate all other market segments in terms of cumulative revenue (93%)

6 billion GNSS devices in 20178 billion by 2020

Mass-market Opportunity for PPP

Industry move

"Most interesting in the location technology competitive landscape is the involvement of Internet giants Google and Alibaba" -- ABI Research (Oct, 2016)

Carrier phase measurements available from smartphones (2016)

Correction services business (2016)

 \mathbf{GOO}

<mark>=</mark> SoftBank

Broadcom announces world's first dual frequency GNSS receiver (2017)

- Xiaomi released world's first smart phone with dual-frequency GPS (2018)
- Softbank plans satnav precise positioning services (2019) 2020

They break down the barriers between professional and consumer markets

@2020 Yang Gao

Mass-market Opportunity for PPP

PPP is a desired precise positioning approach for massmarket applications

- single receiver operation like SPP no baseline length limitation
- cost-effectiveness
- positioning models supporting scalability (signals, accuracies and services)

Advances made in all aspects with increased adoption

- Multi-constellations and multi- \checkmark frequencies
- SSR corrections and services
- Positioning models
- Integer ambiguity resolution \checkmark
- Global, regional and local \checkmark augmentation techniques

@2020 Yang Gao

Positioning platform/environment

Low-dynamicsOpen-sky

Algorithm development often based on IGS data and simulated dynamics

The gap: mass-market applications are in high dynamics modes and environments with poor visibility, multipath, loss of corrections

Applications

Long convergence time post-mission allowed re-surveys allowed

The gap: mass-market applications require real-time, instant and continuous precision solutions

Positioning receivers

- High-end receivers
- Expensive

The gap: existing precise positioning techniques are not designed to work with low-cost sensors

- Low-cost
- higher noise level
- poor oscilator
- sensitive to dynamics
- frequent cycle slips
- biases in mesurmeents
- small antenna

Importance of "instant precision"

Precise positioning techniques that require convergence time are not applicable to massmarket applications

Instant PPP: precise positioning techniques without convergence

Importance of "continuous precision"

precise solution not available

Precise positioning techniques that provide low availability are not applicable to mass-market applications

Instant PPP: precise positioning techniques without convergence

Importance of "trusted precision"

Precise positioning techniques unable to provide integrity data are not applicable to mass-market applications

Importance of "innovation"

Mass-market precise positioning demands novel solutions to support mass-market precise positioning

- Beyond "tuning of existing", "incremental improvement" "simulated kinematic", "IGS data", "aviation integrity",
- Accelerate PPP products and services development with measured milestones
- Develop new business and service models

Correction messages have to be broadcast to users at high update rate (e.g. orbit/clock corrections @ 5 s)

- High comm bandwidth/cost
- Sensitive to correction loss (server, comm link, environment)
- ✓ Reduced precision availability

The gap: mass-market applications are in high dynamics modes and environments with poor visibility, multipath, loss of corrections

There is a need to reduce update rate of corrections with scalability to support mass-market applications

- Low comm bandwidth/cost
- Resistant to correction loss
- Increased precision availability

→ Broadcasting initial conditions

Broadcasting Improved Legacy Navigation Message (ILNAV)

 $\begin{cases} t_{oe}, \sqrt{A}, e, i_0, \Omega_0, \omega, M_0, IDOT, \Delta n, \dot{\Omega}, C_{rc}, C_{rs}, C_{ic}, C_{is}, C_{uc}, C_{us} \\ t_{oc}, a_{f0}, a_{f1}, a_{f2} \end{cases}$

- Improved LNAV: a high-precision version of the standard LNAV by leveraging the LNAV satellite orbit and clock representation
- ILNAV orbit and clock parameters are estimated using real-time precise products
- Follow RTCM message type 1019 for dissemination

ILNAV can support scalable and reduced update rate of orbit and clock corrections.

Fully consistent representation, dissemination, and user algorithms as standard LNAV

ILNAV orbit accuracy (m)

Orbit type	R	Α	С	3D
IGU	0.011	0.035	0.022	0.043
CNES RT	0.020	0.028	0.022	0.041
Improved LNAV	0.012	0.039	0.023	0.047

ILNAV can provide precise satellite orbit corrections with 3D accuracy better than 0.05 m

ILNAV clock accuracy (m)

Update interval	IIF Rb	IIF Cs	IIR/M Rb	Average (all)
5 minutes	0.024	0.069	0.046	0.040
10 minutes	0.027	0.097	0.052	0.047
30 minutes	0.034	0.168	0.062	0.060
1 hour	0.045	0.247	0.072	0.074
2 hours	0.067	0.354	0.092	0.101
CNES RT	0.021	0.024	0.021	0.021

ILNAV can provide clock corrections better than 0.1 m with update interval of 1 hour.

Importance of "continuous precision"

Tight integration of GNSS and SLAM to enable continuous precise positioning in Urban Environments

- Mitigate multipath errors
- Restore GNSS NLOS observations
- Increase precision availability

Pushing "precision" into urban environments

Instant PPP (IP3)

- ✓ Fast convergence within seconds
- ✓ Support single and dual frequency
- ✓ Support all GNSS constellations
- ✓ Worldwide availability of consistent navigation solutions
- ✓ Insensitive to the latency and loss of corrections
- Firmware library can be customized for different receivers/processors

PPI's Low-cost Precision GNSS Solution

Tests in sub-urban areas

30 💎

Power-off-and-on convergence test

Fast re-convergence after passing bridge

32 💎

multi-sensor integration system

Profound IP3/DR

Profound Positioning

20

continuous precise solutions

"continuous precision" "trusted precision"

0.2

0.0

-114.27 -114.265 -114.26 -114.255 -114.25 -114.245 -114.24 -114.235 -114.23 -114.225

Passing Bridge for 10 sec

- Mass-market applications are an emerging opportunity for PPP technology with strong industry demand
- PPP is a desired precise GNSS positioning technique for mass-market applications.
- Instant, continuous and trusted precision is important for mass-market applications
- Technology innovations are required to eliminate the gaps and accelerate PPP products and services development

Looking Ahead

"The COVID-19 pandemic and social distancing measures have raised the profile worldwide on the importance of connected and autonomous vehicles (CAV)" Namir Anani, ICTC President & CEO.

By 2030, our lives, cities, society and infrastructure will be significantly different.